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In this study novel integrative machine learning models embedded with the firefly algorithm 
(FA) were developed and employed to predict energy dissipation on block ramps. The used 
models include multi-layer perceptron neural network (MLPNN), adaptive neuro-fuzzy in-
ference system (ANFIS), group method of data handling (GMDH), support vector regres-
sion (SVR), linear equation (LE), and nonlinear regression equation (NE). The investigation 
focused on the evaluation of the performance of standard and integrative models in different 
runs. The performances of machine learning models and the nonlinear equation are higher 
than the linear equation. The results also show that FA increases the performance of all ap-
plied models. Moreover, the results indicate that the ANFIS-FA is the most stable integrative 
model in comparison to the other embedded methods and reveal that GMDH and SVR are 
the most stable technique among all applied models. The results also show that the accuracy 
of the LE-FA technique is relatively low, RMSE=0.091. The most accurate results provide 
SVR-FA, RMSE=0.034.
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1. Introduction
Excessive kinetic energy causes damage to the hydraulic structures. 

Downstream of dams, the high flow velocity causes scours, which re-
duces the stability of a structure. To control the kinetic energy several 
techniques have been applied 
including designing flip buck-
ets, designing stilling basins, 
designing stepped chutes, and 
designing block ramps [27]. A 
block ramp is a hydraulic struc-
ture that conducts the flow to a 
lower elevation producing high 
energy dissipation [3]. The dis-
sipation causes the material of 
high roughness placed on the 
sloped of the structure.  A typi-
cal block ramp is shown sche-
matically in Fig. 2. 

In Fig. 1 0y  is the upstream flow depth,  H  is the block ramp 

height, ∆E  is the energy dissipation, v  is the flow velocity, 
2

2
v
g

 is 

the velocity head, Q  is the flow discharge, a  is the block ramp angle,  
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Fig. 1. A schematic view of block ramp
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1y  and 2y  are the upstream supercritical flow depth and the down-
stream subcritical flow depth of the hydraulic jump, respectively. 

The design of block ramps must take into consideration the struc-
ture permeability and stability with a number of socio-economic and 
socio-ecologic aspects [3, 21, 27]. The block rump purifies water 
as well as increases water aeration, which is important to decrease 
damages arising from cavitation [17]. The block ramps are resistant 
against destructive forces, especially forces arising from uplift pres-
sure. The maintenance costs of block ramps are relatively low in com-
parison with corresponding maintenance coasts of traditional hydrau-
lic structures. The block ramps are considered to be eco-friendly type 
structures due to the possibility of building them from local material 
[23, 27]. 

The energy dissipation, ∆E , is an important parameter in the design 
of block ramps. In this regard, various experimental studies have been 
conducted to analyze different aspects of block ramp performance, 
especially the amount of dissipation energy under different hydraulic 
and geometric conditions [3, 23, 24, 27]. Pagliara and Chiavaccini 
[23] and Rahmanshahi and Shafai Bejestan [27] conducted some ex-
periments and developed equations for the estimation of ∆E .

In recent years, the successful applications of machine learning 
methods in modeling engineering problems have been reported in 
numerous studies [4, 18, 19, 26, 33]. Despite the empirical formulas 
are easy to use, the outcome of research conducted in recent decades, 
including studies conducted in hydraulic engineering, indicate that 
the machine learning methods are more accurate [14, 16, 22, 29, 39]. 
Recently conducted studies have shown that the integration of ma-
chine learning models with meta-heuristic algorithms may drastically 
increase the accuracy of standard machine learning models. Firefly al-
gorithm (FA) is an effective optimization approach developed by Yang 
[35]. The FA is a generalized form of the three popular meta-heuristic 
algorithms i.e. particle swarm optimization (PSO), differential evolu-
tion (DE), and simulated annealing (SA) [15]. Kumar and Kumar [15] 
discussed various aspects of FA in a study and concluded that the FA 
is a promising optimization algorithm. This motivated present work 
to derive novel and original techniques by developing integrative ma-
chine learning models embedded with the firefly algorithm, FA.

In this study, a number of machine learning techniques were ap-
plied to estimate the energy dissipation by block ramps. The applied 
models include multi-layer perceptron neural network (MLPNN), 
adaptive neuro-fuzzy inference system (ANFIS), group method of 
data handling (GMDH), support vector regression (SVR), and linear 
and nonlinear regression methods. First, the machine learning mod-
els are described. Then, a novel and original technique was derived 
by developing integrative machine learning models embedded with 
the firefly algorithm. Next, model evaluation criteria are introduced. 
Finally, the developed models are ranked based on innovative and 
original criteria including model accuracy, stability, and time duration 
in 30 consecutive runs, and conclusions are specified.

2. Material and methods

2.1. Empirical relations
Pagliara and Chiavaccini [23] developed the following relation by 

using regression methods to estimate E∆  based on their measured 
laboratory data sets:

 ∆
∆E E
E

A A er
B C S y Hc= = + −( ) +( )

0
1 . /
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where rE∆  is the relative energy dissipation, 0E  is the total energy 
upstream of the block ramp, S  is the ramp slope, cy  is the critical 
water depth, and A , B  and C  are coefficients which are determined 
from Table 1.

Rahmanshahi and Shafai Bejestan [27] conducted some experi-
ments and developed two equations for estimating ΔE for smooth 
(Equation 2) and rough (Equation 3) ramps based on the gene-expres-
sion programming regression method:
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where L  is the ramp length.

2.2. Machine learning methods

2.2.1. Multi-layer perceptron neural network
The MLPNN is one of the artificial neural network branches that 

can model complex problems. Like regression methods, MLPNN de-
termines a relation between inputs and outputs and may be recom-
mended to be applied even when a relationship is complex. Many 
studies report the successful application of MLPNN in engineering 
problems [8, 9, 11, 28]. The MLPNN also is a type of deep neural 
network [37]. In the MLPNN algorithm, there are three main layers 
including the input layer, middle layers, and output layer. Each layer 
is composed of several neurons connected to each other. The number 
of neurons in inputs and outputs layers is equal to the number of in-
puts and outputs parameters. The number of layers and neurons of the 
middle layers may vary. The input vector of neurons in the middle 
layers is calculated from the following equation:

 A w x bi
k

j

n
ij j

k+

=
= × +∑1

1
 (4)

where n is the total number of middle layer neurons, jx  is the output 
of jth neuron of k layer, ijw  is the weight between jth neuron of layer 
k and ith neuron of k+1, and b is the bias. The output of the neurons of 
the middle layer may be written in the following form:

 y f Ai i= ( )  (5)

where f is the activation function. The MLPNN can be trained by ap-
plying different optimization approaches such as conjugate gradient, 
gradient descent, and meta-heuristic algorithms. In this study, the 
Levenberg-Marquardt algorithm (LM) and the firefly algorithm (FA) 
were used to determine the network coefficients. 

Table 1. The value of coefficients A, B, and C

50/cy d A B C

50/cy d <2.5 0.33 −1.3 −14.5

2.5< 50/cy d <6.6 0.25 −1.2 −12

6.6< 50/cy d <42 0.15 −1 −11.5

42< 50/cy d 0.2 −0.9 −25

Note: d50 is the particle size at which 50% of ramp material by weight is finer
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2.2.2. Adaptive neuro-fuzzy inference system
The adaptive neuro-fuzzy inference system (ANFIS) is a kind of 

artificial neural network introduced by Jang [12]. The ANFIS is based 
on the Takagi–Sugeno fuzzy inference system (FIS) that has the ad-
vantages of both neural networks and fuzzy logic principles in a single 
structure [12]. The previous studies approved the capability of ANFIS 
to approximate nonlinear functions in engineering problems [1, 5, 7, 
31]. Generally, the ANFIS network consists of five layers. In Fig. 2 a 
basic flow diagram of ANFIS with four inputs is depicted. 

Fig. 2. A schematic view of the developed ANFIS structure

In Fig. 2 L, S, d50, and yc are inputs and 𝛥Er is the output. The first 
layer, which is known as fuzzification, turns the input parameters into 
a fuzzy set by member functions as follow:

 O L iAi Ai
1 1 2 3 4= ( ) =µ , , ,  (6)

 O S iBi Bi
1 5 6 7 8= ( ) =µ , , ,  (7)

 O D iCi Ci
1

50 9 10 11 12= ( ) =µ , , ,  (8)

 O y iDi Di c
1 13 14 15 16= ( ) =µ , , ,  (9)

where µ is the membership function (type A, B, C. or D). In the sec-
ond layer i.e. the multiplication layer, the weight of each rule is calcu-
lated from the following equation:

 O w L S D y ii i Ai Bi Ci Di c
2

50 1 2 3 4= = ( ) ( ) ( ) ( ) =µ µ µ µ. . . , , ,    (10)

The third layer is the normalization layer:

 O w w
w

i
i

i i

3
4= =

∑
 (11)

The fourth layer is the defuzzification layer. The output of this 
layer is obtained as below:

 4 1,2,3,4i iO wf i= =  (12)

where f is a linear regression function. In the fifth layer, which is the 
summation layer, the output of the network can be calculated from the 
following equation:

 O w f ii
i

i i
5 1 2 3 4= =∑ , , ,  (13)

2.2.3. Group method of data handling
The group method of data handling (GMDH) belongs to the neu-

ral network branch of machine learning methods. The GMDH can be 
used to solve different problems such as classification, prediction, etc. 
Numerous studies have reported the successful application of GMDH 
in engineering problems [2, 13, 38]. Like other neural networks, the 
GMDH structure also includes the input layer, middle layers, and out-
put layer. Each layer consists of several neurons. In Fig. 3 a schematic 
view of the developed GMDH with four inputs, five layers, and one 
output is shown. 

Fig. 3. A schematic view of the developed GMDH network

In the neurons of the GMDH network the connection between in-
puts and output variables can be expressed by Kolmogorov–Gabor 
polynomial equation [10]:
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where x is the input vector, y is the output, and w is the weight vector. 
Usually, the second-order form of this equation is used as a transform 
function:

 2 2
0 1 1 2 2 3 1 2 4 1 5 2y w w x w x w x x w x w x= + + + + +  (15)

The weight coefficients can be determined by regression meth-
ods as well as optimization algorithms. In the GMDH network, the 
number of middle layers neurons increases from layer to layer. The 
number of middle layers neurons of quadratic polynomial GMDH is 
calculated from:

 
1

2

j
j NN +  

=   
 

 (16)

where 1jN +  and jN  are the numbers of neurons of j+1th and jth 
middle layer, respectively. As can be seen, the number of neurons 
will increase from layer to layer, which increases the complexity of 
a network. In this study, the maximum number of the middle layers 
neurons is assumed to be 10. In this strategy, the neurons were ranked 
based on their RMSE, 10 of the best neurons were selected for creat-
ing the network, and the rest were eliminated (the gray neurons in 
Fig. 3).

2.2.4. Support vector regression
The support vector machine (SVM) is a type of machine learning 

method that was originally used for classification problems. The SVR 
is an adaptation of SVM developed by Cortes and Vapnik [6] for re-
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gression problems. The wide applications of SVR are reported in dif-
ferent disciplines including engineering [20, 25, 30, 36]. In the SVR 
method, the original data are mapped into a feature space of a higher 
dimension where a linear equation is fitted to the data with minimum 
complexity [32]. The main equation describing the implementation of 
SVR may be written in the following form:

 f x w x b( ) = ( ) +,ϕ  (17)

where ( )f x  is a nonlinear regression function, ( )x∅  is the nonlin-
ear mapping of data in a space of higher dimension, and the vector w 
and the scalar b are the weights. The w and b are determined by the 
following optimization procedure:

 Minimize : *1
2

2

1
w C

i

N
i i+ +

=
∑ξ ξ  (18)

 Subject to :

.

.

,

*

*

y w x b

w x b y

i i i i

i i i i

i i

− ∅( ) +( ) ≤ +

∅( ) +( ) − ≤ +

≥

ε ξ

ε ξ

ξ ξ 00










 (19)

where ξi  and ξi
*  are the slack variables, C is the regularization pa-

rameter, and ε  is the insensitive-loss function. This equation can be 
solved by the method of Lagrange multipliers. The final nonlinear 
regression equation of SVR can be expressed in the following form:

 f x a a K x x b
i

n
i i i( ) = −( ) ( ) +

=
∑

1

* ,  (20)

where a  and *a  are the Lagrange multipliers, and ( ),iK x x  is the 
nonlinear kernel function. In this study the Gaussian kernel function 
was applied:

 K x x x x
i

i,( ) = −







exp

2

22σ
 (21)

where σ  is the kernel function parameter. 

2.3. Regression methods
In this study, in addition to machine learning methods, two simple 

regression equations i.e. linear equation (LE) and nonlinear equation 
(EQ) were applied to predict rE∆ . These equations may be expressed 
in the following form:

 ∆E A A L A S A D A yr c= + + + +0 1 2 3 50 4  (22)

 6 82 40 1 3 5 50 7
A AA A

r cE A A L A S A D A y∆ = + + + +  (23)

where A is the weight coefficient vector. In this study firefly algorithm 
(FA) was applied to estimate the values of A.

2.4.	 Firefly	algorithm
The firefly algorithm (FA) is a nature-inspired swarm-type algo-

rithm that mimics the flashing behavior of the fireflies (is a nature-in-
spired algorithm mimics the flashing behavior of a swarm of fireflies. 
Yang [34] considered three ideal assumptions for developing FA:
First rule: the fireflies are unisex. So, each firefly can attract other 
fireflies distributed in the search space.

Second rule: The attraction of fireflies depends on their brightness. 
Between two fireflies, the brighter one will attract the less bright fire-
fly. This means in the algorithm process the less bright firefly will 
move toward the brighter one. The brightness depends on the distance 
between fireflies-it will decrease with increasing the distance. The 
fireflies will move randomly if there is no bright firefly.

Third rule: The brightness of the population is determined by the cost 
function.

In FA, the distance between fireflies i and j ( ijr ) is defined via 
Euclidean distance:

 r x x x xij i j
k

m
i
k

j
k= − = −( )

=
∑

1

 (24)

where x denotes the position of fireflies and m is the dimension of 
the problem under consideration. The attractiveness of the population 
is determined by the following equation:

 β β γ
ij

re ij= −
0

2  (25)

In the above equation, 0β  is the attractiveness at  0ijr = . In the 
end, the new position of fireflies is calculated by the following equa-
tion:

 x x e x xi
t

i
t r

j
t

i
tij+ −= + −( )1

0
2

β γ  (26)

2.5. Integrative FA-machine learning methods
In this study, standard machine learning methods and integrative 

machine learning methods combined with the firefly algorithm (FA) 
were applied to predict the energy dissipation over block ramps. The 
firefly algorithm was incorporated in the process of the training of 
models. The training procedure with FA for all machine learning 
methods is the same. At first, it is necessary to determine which pa-
rameters should be optimized and introduce an objective/cost func-
tion. For MLPNN weights and biases (Eq. 4), for ANFIS membership 
function parameters, for SVR regularization (C), insensitive loss (ε), 
and kernel function (σ) parameters, for GMDH weights of quadratic 
polynomial function (Eq. 15), and for regression methods weight co-
efficients (Eq. 22 and 23) were optimized with the FA. The RMSE 
between measured and predicted values is considered as an objective/
cost function. The FA is a population-based optimization algorithm. 
So before starting the optimization process, the number of population 
and other constant parameters must be initialized. In general, these 
parameters are initialized based on trial and error, user experiences, 
and previous studies. The considered values of FA parameters are pre-
sented in Table 2. 

In the next stage, the population/fireflies must be distributed ran-
domly in the search space and their positions are updated based on 
the FA equations. In the end, the optimized values must be set to the 
models which provide the predicted values. For a better view of these 
steps, in Fig. 4 the flowchart of the optimization process of the applied 
models by applying FA is illustrated.

2.6. Input data 
In this study, ramp length (L), particle diameters (d50), ramp slope 

(S), and critical flow depth (yc) were considered as input parameters 
to model the energy dissipation on block ramps ( rE∆ ). In total 465 
data were used to create the models. These data were collected from 
two published recourses. Pagliara and Chiavaccini [23] carried out 
an experimental study on the water surface profile over the block 
ramps and determined the amount of energy dissipation. In these ex-
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periments, the discharge range was from 14 to 106 l/s and the ramp 
height was equal to 0.7 m. Different ramps geometry and hydraulic 
conditions were considered in hydraulic experiments conducted by 
Rahmanshahi and Shafai Bejestan [27]. A total of 255 data were ex-
tracted from this publication. Rahmanshahi and Shafai Bejestan [27] 
conducted laboratory experiments in a flume of 8 m length, 0.3 m 
wide, and 0.8 m height. The discharge varied from 8 to 36 l/s, and the 
block size varied from 0.0 mm to 30 mm. A total of 210 data were 
extracted from these experiments. The details of experimental data 
are presented in Table 3.

2.7. Modeling procedure
The data set was divided randomly into three categories including 

the training data set that comprises 70% of all data, the validation data 
set (15%), and the testing data set (15%). In Table 4 the ranges of the 
data sets are presented.

All models were trained based on the training data set. The valida-
tion data was used to prevent the overfitting of models in the training 
process. The testing data set was used to evaluate the performance of 
applied models. In the end, the results of models in 30 consecutive 
different runs were analyzed. 

2.8. Model Evaluation Criteria
Five statistical parameters such as the root mean square error 

(RMSE), mean absolute error (MAE), coefficient of determination 
(R2), Nash–Sutcliffe efficiency (NSE), and index of agreement (IA) 
were used to analyze and evaluate errors and output results. These 
parameters are calculated from the following equations:

 RMSE
N

E E
i

N
ri

p
ri
o= −( )

=
∑

1

1

2
∆ ∆  (27)

 MAE
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p
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1
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Table 3. The details of experimental data applied in the modeling

Parameter
Rahmanshahi and Shafai Bejestan [27] Pagliara and Chiavaccini [23]

D AVG sd D AVG sd

L (m) 1.9 1.9 0 [2.1, 6.91] 4.441 1.97

d50 (mm) [0, 30] 15.52 10.031 [64, 133.8] 96.72 19.885

S [0.083, 0.25] 0.174 0.063 [0.101, 0.333] 0.199 0.097

yc (m) [0.041, 0.114] 0.079 0.022 [0.022, 0.114] 0.070 0.021

 

rE∆
[0.104, 0.865] 0.539 0.166 [0.607, 0.965] 0.787 0.080

Number of data 210 255
Note: D denotes the range; AVG denotes the average value; Sd denotes the standard deviation

Table 4. The ranges of the training, validation and testing data sets

Parameter
Training Validation Testing

D AVG sd D AVG sd D AVG sd

L (m) [1.9, 6.91] 3.28 1.94 [1.9, 6.91] 3.26 1.88 [1.9, 6.91] 3.38 1.92

d50 (mm) [0, 133.8] 60.72 43.14 [0, 133.8] 58.74 43.37 [0, 133.8] 58.25 45.41

S [0.08, 0.33] 0.19 0.08 [0.08, 0.33] 0.18 0.09 [0.08, 0.33] 0.18 0.07

yc (m) [0.02, 0.11] 0.07 0.02 [0.03, 0.11] 0.07 0.02 [0.03, 0.11] 0.08 0.02

rE∆ [0.18, 0.96] 0.68 0.17 [0.10, 0.94] 0.66 0.19 [0.13, 0.93] 0.65 0.20

Note: D denotes the range; AVG denotes the average value; Sd denotes the standard deviation

Table 2. The considered values of the initial parameters of FA

Parameter Value

Mutation Coefficient Damping 0.97
Light Absorption Coefficient (γ) 1
Attraction Coefficient (β0) 2
Mutation Coefficient (a) 0.2
Population (MLPNN) 100
Population (ANFIS) 200
Population (GMDH) 100
Population (SVR) 10
Population (Regression equations) 100

Fig. 4. Diagram of the training procedure of the applied integrative MLPNN, 
ANFIS, SVR, GMDH, and regression methods combined with FA
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where p
rE∆  is the predicted energy dissipation, o

rE∆  denotes the 
observed values, and rE∆  is the average value of energy dissipa-
tion. 

3. Results
The final performance of the applied machine learning models 

(ANFIS, ANFIS-FA, MLPNN, MLPNN-FA GMDH, GMDH-FA, 
SVR, and SVR-FA) along with the regression-based (LE-FA and NE-

FA) machine learning models are presented in Table 5 for the training 
and validation stages. 

As can be seen in Table 5, the models were evaluated based on the 
average performance and the best and worst performances. The analy-
sis of the results of machine learning models based on the RMSE, 
NSE, and coefficient of determination show that the best training 
process for the simulation of the energy dissipation provides ANFIS 
and SVR-FA. These models provide the lowest values for the RMSE 
and the highest values for the R2 and NSE during the training and 
validation stages. On the other hand, the regression-based models 
(LE-FA and NE-FA) show weaker efficiency than the machine learn-
ing models. Although the standard GMDH model acts better than the 
regression-based models, the integrative GMDH-FA exhibits weaker 
performance than the regression-based models.

The differences between the statistical measures for the training 
and validation sets of MLPNN, SVR, ANFIS, MLPNN-FA, SVR-FA, 
and ANFIS-FA models in Table 5 imply that there is an unexplained 
variance for all these models. However, by the use of the validation 
set, the overtraining problem has been resolved. 

In Table 6, the final assessment of the predictive models is given 
using five performance criteria, including the RMSE, MAE, NSE, IA, 
and R2. Unlike Table 5, Table 6 comprises the results of two other 
models i.e. the empirical model of Pagliara and Chiavaccini [23] and 
the machine learning model of GEP reported by Rahmanshahi [27], 
so that one can have a better and unbiased judgment over the final 
accuracy of the models. Taking into account the statistical measures, 

Table 5. Performance of the applied machine learning models estimating the dissipation of energy for the training and validation stages 

Method Result type

Statistical indices

Training Validation

RMSE R2 NSE RMSE R2 NSE

ANFIS Best 0.016 0.99 0.99 0.041 0.984 0.955

ANFIS Worst 0.026 0.976 0.976 0.047 0.976 0.94

ANFIS Average 0.019 0.986 0.986 0.044 0.983 0.949

ANFIS-FA Best 0.017 0.989 0.989 0.043 0.97 0.952

ANFIS-FA Worst 0.037 0.954 0.951 0.047 0.977 0.941

ANFIS-FA Average 0.023 0.981 0.981 0.045 0.979 0.947

MLPNN Best 0.018 0.988 0.988 0.045 0.977 0.947

MLPNN Worst 0.025 0.978 0.978 0.057 0.949 0.914

MLPNN Average 0.02 0.985 0.985 0.049 0.97 0.936

MLPNN-FA Best 0.022 0.982 0.982 0.043 0.977 0.95

MLPNN-FA Worst 0.036 0.955 0.953 0.049 0.969 0.938

MLPNN-FA Average 0.027 0.974 0.974 0.046 0.973 0.943

GMDH - 0.035 0.955 0.955 0.053 0.96 0.925

GMDH-FA Best 0.039 0.946 0.944 0.044 0.967 0.949

GMDH-FA Worst 0.057 0.892 0.884 0.061 0.933 0.901

GMDH-FA Average 0.048 0.919 0.915 0.052 0.946 0.927

SVR - 0.034 0.963 0.959 0.052 0.941 0.929

SVR-FA Best 0.016 0.991 0.991 0.027 0.982 0.98

SVR-FA Worst 0.037 0.973 0.965 0.045 0.954 0.948

SVR-FA Average 0.017 0.99 0.989 0.038 0.965 0.96

LE-FA Best 0.076 0.789 0.789 0.086 0.813 0.805

LE-FA Worst 0.084 0.782 0.744 0.088 0.802 0.794

LE-FA Average 0.077 0.787 0.784 0.087 0.808 0.799

NE-FA Best 0.044 0.93 0.93 0.05 0.938 0.934

NE-FA Worst 0.071 0.861 0.816 0.065 0.92 0.889

NE-FA Average 0.053 0.902 0.896 0.059 0.933 0.907
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the SVR-FA (RMSE=0.034, NSE=0.971) provides the best predictions 
for the energy dissipation values. The ANFIS-FA and MLPNN-FA 
(RMSE= 0.040) also show a reasonable performance for the predic-
tion process. 

In addition to the average values of the statistical criteria, Table 
6 provides useful information regarding the ranges of the statistical 
measures especially information regarding the weakest outcome and 
the best results. Among a number of possible comparisons which may 
be conducted by applying between the weakest and the best results, 
it is worth comparing the variance in the predicted results. In this re-
gard, it is worth noting that the NSE values for the SVR model range 
from 0.952 for the weakest results to 0.980 for the best results, while 
for the GMDH-FA model this range is from 0.891 to 0.949. In other 
words, the lowest NSE value of the SVR-FA model is greater than the 
highest NSE value of the GMDH-FA model This fact indicates the ab-
solute superiority of the SVR-FA model over the GMDH-FA model.

On the whole, for the SVR model, the integrative SVR-FA showed 
considerably better performance than its standard counterpart. For 
instance, the SVR-FA improved the RMSE values up to 22% and 
the NSE value up to 2% in comparison to the standard SVR model. 

The integration process improved the performances of all the applied 
machine learning models, however, the embedding advantage is not 
blatant for the other applied models like the SVR-FA model. As an 
illustration, the GMDH-FA slightly enhanced the statistical measures 
compared to the standard GMDH model i.e. the average RMSE of the 
GMDH-FA is equal to 0.052 while the RMSE of the GMDH is 0.054.  

Interestingly, the integrative nonlinear regression model, NE-FA, 
(RMSE=0.043 and R2=0.963) followed by the empirical relation sug-
gested by Pagliara and Chiavaccini [23] (RMSE=0.043 and R2=0.955) 
act reasonably in comparison to the sophisticated machine learning 
models. Although these nonlinear relations do not provide as good 
results as the SVR-FA, ANFIS-FA, and MLPNN-FA models, they 
surpassed the standard machine learning models such as the SVR, 
MLPNN, ANFIS, GEP, and GMDH. As could be expected, the linear 
regression-based model, LE-FA, demonstrated the weakest perform-
ance compared to the nonlinear and machine learning models. 

Fig. 5 and Fig. 6 are scatterplots that compare the observed and 
predicted energy dissipation values (ΔEr) from the best standard and 
integrative machine learning methods, respectively. Obviously, the 
predicted values of the LE-FA and GEP models are more scattered 

Table 6. Performance of the applied machine learning models predicting the dissipation of energy for the testing set 

Method Result type

Statistical indices

Testing

RMSE R2 MAE NSE IA

ANFIS Best 0.039 0.98 0.032 0.961 0.99

ANFIS Worst 0.049 0.953 0.036 0.938 0.985

ANFIS Average 0.041 0.974 0.033 0.957 0.989

ANFIS-FA Best 0.038 0.975 0.029 0.964 0.991

ANFIS-FA Worst 0.046 0.953 0.033 0.947 0.986

ANFIS-FA Average 0.04 0.974 0.03 0.96 0.99

MLPNN Best 0.041 0.974 0.033 0.958 0.989

MLPNN Worst 0.049 0.956 0.035 0.94 0.985

MLPNN Average 0.044 0.968 0.034 0.951 0.988

MLPNN-FA Best 0.039 0.973 0.03 0.962 0.99

MLPNN-FA Worst 0.048 0.956 0.037 0.943 0.985

MLPNN-FA Average 0.04 0.974 0.032 0.959 0.99

GMDH - 0.054 0.942 0.04 0.927 0.981

GMDH-FA Best 0.045 0.95 0.034 0.949 0.987

GMDH-FA Worst 0.066 0.914 0.052 0.891 0.972

GMDH-FA Average 0.052 0.94 0.039 0.933 0.982

SVR - 0.044 0.961 0.033 0.951 0.986

SVR-FA Best 0.028 0.983 0.019 0.98 0.995

SVR-FA Worst 0.043 0.957 0.028 0.952 0.987

SVR-FA Average 0.034 0.977 0.021 0.971 0.992

LE-FA Best 0.089 0.807 0.069 0.802 0.946

LE-FA Worst 0.093 0.794 0.065 0.781 0.927

LE-FA Average 0.091 0.802 0.066 0.793 0.934

NE-FA Best 0.043 0.963 0.034 0.954 0.988

NE-FA Worst 0.062 0.911 0.048 0.905 0.976

NE-FA Average 0.046 0.955 0.036 0.948 0.986

Pagliara and Chiavaccini 
[23] - 0.043 0.955 0.033 0.954 0.988

GEP-Rahmanshahi and 
Shafai Bejestan [27] - 0.07 0.925 0.049 0.876 0.967
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than the other applied models. It can also be seen that the SVR models 
(both the standard SVR and SVR-FA) tend to over-predict smaller 
values of energy dissipation (ΔEr<0.5). Although the SVR-FA model 
acts better than the other models (the highest R2 value equal to 0.977), 
the ANFIS-FA is more successful in mapping the predicted values 
close to the line of agreement (1:1 line) with the highest trendline 
slope coefficient close to 1 (m= 0.979).

In Table 7, the computational costs (CPU time) of a single and 30 
consecutive runs related to the applied machine learning models are 
presented. While the computational times of the standard machine 
learning models for single runs, including ANFIS, MLPNN, GMDH, 
and SVR, are less than 4 seconds, their integrative FA counterparts are 
not as timely-efficient models as the standard ones. This issue reveals 

the fact that embedding the FA model to the machine learning models 
cannot be always considered as an ultimate technique. Although most 
of the published research papers ‒ together with this study ‒ have 
already claimed that using integrative models could improve the ac-
curacy of the standard machine learning models, the majority of them 
have not reported and compared the computational cost of the stand-
ard versus integrative models. In other words, if the computational 
time is not a confining factor for the user/modeler, then the applica-
tion of integrative machine learning models is recommended. 

Fig. 5. Scatterplots comparing observed and predicted energy dissipation at the testing stage for standard machine learning 
models

Fig. 6. Scatterplots comparing observed and predicted energy dissipation at the testing stage for integrative machine learn-
ing models
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Table 7. Computational cost of a single and consecutive 30 runs-time 
duration (CPU: AMD RyzenTM 7 PRO 4750U)

Method Single run (s) 30 consecutive runs (s)

ANFIS 3 90

ANFIS-FA 11627 348810

MLPNN 3 90

MLPNN-FA 35978 1079340

GMDH 0.5 15

GMDH-FA 1124.8 33744

SVR 0.1 3

SVR-FA 138 4140

LE-FA 96 2880

NL-FA 580 17400

Summation 48436.6 1453098

4. Further Discussion
Fig. 7 depicts the box-whisker plots for the applied machine 

learning models and the testing set. The box-whisker plots illustrate 
the spreading of the dataset based on a five-element summary: the 
minimum, the first quartile, the median, the third quartile, and the 
maximum. 

Such plots reveal two facts about the performance of the derived 
models: (i) the accuracy and (ii) the precision. As for the accuracy of 
the models, the SVR-FA shows the lowest values for the RMSE (e.g., 
the median equal to 0.038) and the highest values for the NSE (e.g., 
the median equal to 0.963). On the other hand, the LE model acts 
worst, in terms of accuracy, with the RMSE median equal to 0.091 and 
NSE median equal to 0.790. Regarding the precision of the models, 
the GMDH and SVR models were absolutely superior to the other 
applied models in such a way that no visual differences are observed 
between the minimum and maximum values. The corresponding box-
whisker plots with the GMDH-FA and NE-FA show that these models 
have the widest maximum-minimum range (the distance between the 
lowest and highest parts of the box-whisker plots). This means that the 
GMDH-FA and NE-FA are the least precise applied models. Hence, 
an interesting fact can be noted from the plots in Fig 7. By embedding 
the FA algorithm to the MLPNN and SVR machine learning models, 
the accuracy of the models has been improved, while the precision of 
the models has not been enhanced. Embedding the FA to the ANFIS 
not only improved the accuracy of the model but also slightly up-
graded the precision of the standard ANFIS. The GMDH-FA model 
was the only machine learning model whose performance has not 
been improved in comparison with the performance of a standard 
GMDH. Thus, unless more studies suggest using embedded GMDH 
models, it is not recommended to create an integrative version of the 
standard GMDH model. In the last decades, it has been shown that 
the machine learning models have better performance in comparison 
with the traditional methods. Nonetheless, the application of machine 
learning models is more difficult than empirical and regression equa-
tions. However,  rE∆  is an important parameter for the design of 
block ramps. Hence, the designers are recommended to consider the 
trained SVR-FA model to calculate  rE∆  in real water management 
projects.

5. Conclusion
In this study, comprehensive investigations were conducted to de-

rive a novel and original technique by developing integrative machine 
learning models embedded with the firefly algorithm, FA, and apply-

ing the derived models in the prediction of energy dissipation on block 
ramps ( rE∆ ). Four standard machine learning models including mul-
ti-layer perceptron neural network (MLPNN), adaptive neuro-fuzzy 
inference system (ANFIS), group method of data handling (GMDH), 
and support vector regression (SVR), as well as linear and nonlinear 
regression equations, were chosen as the basic predictive methods. 
In addition to the aforementioned models, two empirically-based re-
lations were applied for comparisons with the derive models. Four 
parameters including ramp length (L), particle diameter (d50), ramp 
slope (S), and critical flow depth (yc) were considered as inputs to 
the developed models. The performance of each model was evaluated 
in 30 consecutive runs. The effectiveness of the developed models 
was evaluated and ranked based on innovative and original criteria in-
cluding model accuracy, stability, and time duration in 30 consecutive 
runs. The results show that the SVR-FA is the most accurate model 
among the developed models (RMSE=0.034). Moreover, the results 
show that the FA increases the accuracy of SVR, ANFIS, MLPNN, 
and GMDH by about 22.73%, 2.44%, 9.09%, and 3.70%, respective-
ly. The results reveal that the standard GMDH and SVR are the most 
stable models, while their integration with FA reduces their stability. 
The computational cost analysis of the applied models reveals that the 
FA increases the time duration of the modeling process. 

Fig. 7. Box-whisker plots for the RMSE and NSE values based on the 30 runs 
of the applied machine learning models 
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